4. 深入了解流程控制¶
除了剛才介紹的 while
,Python 擁有在其他程式語言中常用的流程控制語法,並有ㄧ些不一樣的改變。
4.1. if
陳述式¶
或許最常見的陳述式種類就是 if
了。舉例來說:
>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print('Negative changed to zero')
... elif x == 0:
... print('Zero')
... elif x == 1:
... print('Single')
... else:
... print('More')
...
More
可以有零個或多個 elif
段落,且 else
段落可有可無。關鍵字 elif
只是「else if」的縮寫,並且用來避免過多的縮排。一個 if
… elif
… elif
… 序列可以用來替代其他語言中出現的 switch
或 case
陳述式。
4.2. for
陳述式¶
在 Python 中的 for
陳述式可能不同於在 C 或 Pascal 中所看到的使用方式。與其只能选代 (iterate) 一個等差級數(如 Pascal),或給與使用者定義选代步進方式與結束條件(如 C),Python 的 for
陳述选代任何序列(list 或者字串)的元素,以他們出現在序列中的順序。例如(無意雙關):
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print(w, len(w))
...
cat 3
window 6
defenestrate 12
如果你在迴圈中需要修改一個你正在选代的序列(例如重複一些選擇的元素),那麼會建議你先建立一個序列的拷貝。选代序列並不暗示建立新的拷貝。此時 slice 語法就讓這件事十分容易完成:
>>> for w in words[:]: # Loop over a slice copy of the entire list.
... if len(w) > 6:
... words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']
With for w in words:
, the example would attempt to create an infinite list,
inserting defenestrate
over and over again.
4.3. range()
函式¶
如果你需要选代一個數列的話,使用內建 range()
函式就很方便。它可以生成一等差級數:
>>> for i in range(5):
... print(i)
...
0
1
2
3
4
給定的結束值永遠不會出現在生成的序列中;range(10)
生成的 10 個數值,即對應存取一個長度為 10 的序列內每一個元素的索引值。也可以讓 range 從其他數值計數,或者給定不同的級距(甚至為負;有時稱之為 『step』):
range(5, 10)
5, 6, 7, 8, 9
range(0, 10, 3)
0, 3, 6, 9
range(-10, -100, -30)
-10, -40, -70
欲选代一個序列的索引值們,你可以搭配使用 range()
和 len()
如下:
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
然而,在多數的情況,使用 enumerate()
函式將更為方便,詳見迴圈技巧。
如果直接印出一個 range 則會出現奇怪的輸出:
>>> print(range(10))
range(0, 10)
在很多情況下,由 range()
回傳的物件的行為如同一個 list,但實際上它並不是。它是一個物件在你选代時會回傳想要的序列的連續元素,並不會真正建出這個序列的 list,以節省空間。
我們稱這樣的物件為 iterable(可选代的),意即能作為函式、陳述式中能一直獲取連續元素直到用盡的部件。我們已經看過 for
陳述式可做為如此的 iterator(选代器)。list()
函式為另一個例子,他可以自 iterable(可选代物件)建立 list:
>>> list(range(5))
[0, 1, 2, 3, 4]
待會我們可以看到更多函式回傳 iterable 和接受 iterable 為引數。
4.4. break
和 continue
陳述、迴圈內 else
段落¶
The break
statement, like in C, breaks out of the innermost enclosing
for
or while
loop.
迴圈可以帶有一個 else
段落。當迴圈歷遍选代的 list (在 for
中)或條件為偽(在 while
中)時,這個段落會被執行;但迴圈被 break
陳述終止時則不會。底下尋找質數的迴圈即示範了這個行為:
>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
(沒錯,這是正確的程式碼。請看仔細:else
段落屬於 for
迴圈,並非 if
陳述。)
當 else
段落與迴圈使用時,相較於搭配 if
陳述使用,它的行為與搭配 try
陳述使用時更為相似:try
的 else
段落在沒有任何例外 (exception) 時執行,而迴圈的 else
段落在沒有任何 break
時執行。更多有關 try
陳述和例外的介紹,見處理例外。
continue
陳述,亦承襲於 C 語言,讓迴圈於下個选代起繼續執行:
>>> for num in range(2, 10):
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9
4.5. pass
陳述式¶
pass
陳述不執行任何動作。它用在語法上需要一個陳述但不需要執行任何動作的時候。例如:
>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...
這經常用於定義一個最簡單的類別:
>>> class MyEmptyClass:
... pass
...
pass
亦可作為一個函式或條件判斷主體的預留位置,它可幫助你以更宏觀的角度思考並撰寫新的程式碼。pass
可自動忽略:
>>> def initlog(*args):
... pass # Remember to implement this!
...
4.6. 定義函式 (function)¶
We can create a function that writes the Fibonacci series to an arbitrary boundary:
>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print(a, end=' ')
... a, b = b, a+b
... print()
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
The keyword def
introduces a function definition. It must be
followed by the function name and the parenthesized list of formal parameters.
The statements that form the body of the function start at the next line, and
must be indented.
The first statement of the function body can optionally be a string literal; this string literal is the function’s documentation string, or docstring. (More about docstrings can be found in the section 說明文件字串.) There are tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively browse through code; it’s good practice to include docstrings in code that you write, so make a habit of it.
The execution of a function introduces a new symbol table used for the local
variables of the function. More precisely, all variable assignments in a
function store the value in the local symbol table; whereas variable references
first look in the local symbol table, then in the local symbol tables of
enclosing functions, then in the global symbol table, and finally in the table
of built-in names. Thus, global variables cannot be directly assigned a value
within a function (unless named in a global
statement), although they
may be referenced.
The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not the value of the object). [1] When a function calls another function, a new local symbol table is created for that call.
A function definition introduces the function name in the current symbol table. The value of the function name has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which can then also be used as a function. This serves as a general renaming mechanism:
>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89
Coming from other languages, you might object that fib
is not a function but
a procedure since it doesn’t return a value. In fact, even functions without a
return
statement do return a value, albeit a rather boring one. This
value is called None
(it’s a built-in name). Writing the value None
is
normally suppressed by the interpreter if it would be the only value written.
You can see it if you really want to using print()
:
>>> fib(0)
>>> print(fib(0))
None
It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:
>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
This example, as usual, demonstrates some new Python features:
- The
return
statement returns with a value from a function.return
without an expression argument returnsNone
. Falling off the end of a function also returnsNone
. - The statement
result.append(a)
calls a method of the list objectresult
. A method is a function that 『belongs』 to an object and is namedobj.methodname
, whereobj
is some object (this may be an expression), andmethodname
is the name of a method that is defined by the object’s type. Different types define different methods. Methods of different types may have the same name without causing ambiguity. (It is possible to define your own object types and methods, using classes, see Classes) The methodappend()
shown in the example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent toresult = result + [a]
, but more efficient.
4.7. More on Defining Functions¶
It is also possible to define functions with a variable number of arguments. There are three forms, which can be combined.
4.7.1. Default Argument Values¶
The most useful form is to specify a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined to allow. For example:
def ask_ok(prompt, retries=4, reminder='Please try again!'):
while True:
ok = input(prompt)
if ok in ('y', 'ye', 'yes'):
return True
if ok in ('n', 'no', 'nop', 'nope'):
return False
retries = retries - 1
if retries < 0:
raise ValueError('invalid user response')
print(reminder)
This function can be called in several ways:
- giving only the mandatory argument:
ask_ok('Do you really want to quit?')
- giving one of the optional arguments:
ask_ok('OK to overwrite the file?', 2)
- or even giving all arguments:
ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')
This example also introduces the in
keyword. This tests whether or
not a sequence contains a certain value.
The default values are evaluated at the point of function definition in the defining scope, so that
i = 5
def f(arg=i):
print(arg)
i = 6
f()
will print 5
.
Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the arguments passed to it on subsequent calls:
def f(a, L=[]):
L.append(a)
return L
print(f(1))
print(f(2))
print(f(3))
This will print
[1]
[1, 2]
[1, 2, 3]
If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:
def f(a, L=None):
if L is None:
L = []
L.append(a)
return L
4.7.2. Keyword Arguments¶
Functions can also be called using keyword arguments
of the form kwarg=value
. For instance, the following function:
def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
print("-- This parrot wouldn't", action, end=' ')
print("if you put", voltage, "volts through it.")
print("-- Lovely plumage, the", type)
print("-- It's", state, "!")
accepts one required argument (voltage
) and three optional arguments
(state
, action
, and type
). This function can be called in any
of the following ways:
parrot(1000) # 1 positional argument
parrot(voltage=1000) # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump') # 3 positional arguments
parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword
but all the following calls would be invalid:
parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor='John Cleese') # unknown keyword argument
In a function call, keyword arguments must follow positional arguments.
All the keyword arguments passed must match one of the arguments
accepted by the function (e.g. actor
is not a valid argument for the
parrot
function), and their order is not important. This also includes
non-optional arguments (e.g. parrot(voltage=1000)
is valid too).
No argument may receive a value more than once.
Here’s an example that fails due to this restriction:
>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for keyword argument 'a'
When a final formal parameter of the form **name
is present, it receives a
dictionary (see Mapping Types — dict) containing all keyword arguments except for
those corresponding to a formal parameter. This may be combined with a formal
parameter of the form *name
(described in the next subsection) which
receives a tuple containing the positional arguments beyond the formal parameter
list. (*name
must occur before **name
.) For example, if we define a
function like this:
def cheeseshop(kind, *arguments, **keywords):
print("-- Do you have any", kind, "?")
print("-- I'm sorry, we're all out of", kind)
for arg in arguments:
print(arg)
print("-" * 40)
for kw in keywords:
print(kw, ":", keywords[kw])
It could be called like this:
cheeseshop("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")
and of course it would print:
-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
----------------------------------------
shopkeeper : Michael Palin
client : John Cleese
sketch : Cheese Shop Sketch
Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were provided in the function call.
4.7.3. Arbitrary Argument Lists¶
Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments. These arguments will be wrapped up in a tuple (see Tuples 和序列 (Sequences)). Before the variable number of arguments, zero or more normal arguments may occur.
def write_multiple_items(file, separator, *args):
file.write(separator.join(args))
Normally, these variadic
arguments will be last in the list of formal
parameters, because they scoop up all remaining input arguments that are
passed to the function. Any formal parameters which occur after the *args
parameter are 『keyword-only』 arguments, meaning that they can only be used as
keywords rather than positional arguments.
>>> def concat(*args, sep="/"):
... return sep.join(args)
...
>>> concat("earth", "mars", "venus")
'earth/mars/venus'
>>> concat("earth", "mars", "venus", sep=".")
'earth.mars.venus'
4.7.4. Unpacking Argument Lists¶
The reverse situation occurs when the arguments are already in a list or tuple
but need to be unpacked for a function call requiring separate positional
arguments. For instance, the built-in range()
function expects separate
start and stop arguments. If they are not available separately, write the
function call with the *
-operator to unpack the arguments out of a list
or tuple:
>>> list(range(3, 6)) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> list(range(*args)) # call with arguments unpacked from a list
[3, 4, 5]
In the same fashion, dictionaries can deliver keyword arguments with the **
-operator:
>>> def parrot(voltage, state='a stiff', action='voom'):
... print("-- This parrot wouldn't", action, end=' ')
... print("if you put", voltage, "volts through it.", end=' ')
... print("E's", state, "!")
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !
4.7.5. Lambda Expressions¶
Small anonymous functions can be created with the lambda
keyword.
This function returns the sum of its two arguments: lambda a, b: a+b
.
Lambda functions can be used wherever function objects are required. They are
syntactically restricted to a single expression. Semantically, they are just
syntactic sugar for a normal function definition. Like nested function
definitions, lambda functions can reference variables from the containing
scope:
>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43
The above example uses a lambda expression to return a function. Another use is to pass a small function as an argument:
>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]
4.7.6. 說明文件字串¶
Here are some conventions about the content and formatting of documentation strings.
The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly state the object’s name or type, since these are available by other means (except if the name happens to be a verb describing a function’s operation). This line should begin with a capital letter and end with a period.
If there are more lines in the documentation string, the second line should be blank, visually separating the summary from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling conventions, its side effects, etc.
The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documentation have to strip indentation if desired. This is done using the following convention. The first non-blank line after the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string literal.) Whitespace 「equivalent」 to this indentation is then stripped from the start of all lines of the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally).
Here is an example of a multi-line docstring:
>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print(my_function.__doc__)
Do nothing, but document it.
No, really, it doesn't do anything.
4.7.7. Function Annotations¶
Function annotations are completely optional metadata information about the types used by user-defined functions (see PEP 3107 and PEP 484 for more information).
Annotations are stored in the __annotations__
attribute of the function
as a dictionary and have no effect on any other part of the function. Parameter
annotations are defined by a colon after the parameter name, followed by an
expression evaluating to the value of the annotation. Return annotations are
defined by a literal ->
, followed by an expression, between the parameter
list and the colon denoting the end of the def
statement. The
following example has a positional argument, a keyword argument, and the return
value annotated:
>>> def f(ham: str, eggs: str = 'eggs') -> str:
... print("Annotations:", f.__annotations__)
... print("Arguments:", ham, eggs)
... return ham + ' and ' + eggs
...
>>> f('spam')
Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs
'spam and eggs'
4.8. Intermezzo: Coding Style¶
Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style. Most languages can be written (or more concise, formatted) in different styles; some are more readable than others. Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously for that.
For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points extracted for you:
Use 4-space indentation, and no tabs.
4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation (easier to read). Tabs introduce confusion, and are best left out.
Wrap lines so that they don’t exceed 79 characters.
This helps users with small displays and makes it possible to have several code files side-by-side on larger displays.
Use blank lines to separate functions and classes, and larger blocks of code inside functions.
When possible, put comments on a line of their own.
Use docstrings.
Use spaces around operators and after commas, but not directly inside bracketing constructs:
a = f(1, 2) + g(3, 4)
.Name your classes and functions consistently; the convention is to use
CamelCase
for classes andlower_case_with_underscores
for functions and methods. Always useself
as the name for the first method argument (see A First Look at Classes for more on classes and methods).Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default, UTF-8, or even plain ASCII work best in any case.
Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a different language will read or maintain the code.
註解
[1] | Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee makes to it (items inserted into a list). |